Aim: I can write an equation to find an unknown angle and solve by writing out each step.

Do Now

Two lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Find the values of r, s, and t. Use notes from yesterday’s lesson or videos to help!

Model Example 1

Two lines meet at a point that is also the endpoint of a ray. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of p and r.
Model Example 2

Three lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of z.

\[
\begin{align*}
28 + 160 + p &= 180 \\
44 + p &= 180 \\
-44 &= -44 \\
\frac{136}{4} &= \frac{p}{4} \\
4p &= 136^\circ \\
\text{So since } 4p + 4r \text{ fall on a line I know that they are equal to } 180^\circ: \\
180 &= 4r \\
180 - 136 &= 4r \\
44 &= 4r \\
44 &= 4r \\
4 &= 4r \\
\frac{44}{4} &= \frac{4r}{4} \\
11 &= r
\end{align*}
\]
Since $\angle 2$, the right \angle and the \angle that measures 19° all fall on a line, I know that all 3 \angles will be equal to 180°.

\[90 + 19 + z = 180\]
\[109 + z = 180\]
\[-109\]
\[-109\]
\[-z = 71] \text{ (then)}

Since the right \angle and $\angle 2$ are on a line, I know that they will equal 180°.

\[71 + 90 + y = 180\] \(\Rightarrow\) \[50 + y = 19\]
\[161 + y = 180\] \(\Rightarrow\) \[161 = 19\]
\[-161\]
\[-161\]
You try # 1

Two lines meet at a point that is also the endpoint of a ray. The ray is perpendicular to one of the lines as shown. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of t.
You try #2

Three lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of x. Is your answer reasonable? Explain how you know.

REMINDER:
- To solve an unknown angle problem, identify the angle relationship(s) first to set up an equation that will yield the unknown value.
- Angles on a line and supplementary angles are not the same relationship. Supplementary angles are two angles whose angle measures sum to 180° whereas angles on a line are two or more adjacent angles whose angle measures sum to 180°.